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THE CRITICAL VELOCITIES OF A FLOATING ICE PLATE
SUBJECTED TO IN-PLANE FORCES AND A MOVING LOAD

by

Arnold D. Kerr

INTRODUCTION

It is well known that when a vehicle is moving on a floating ice sheet there is a certain
velocity, denoted in the mechanics literature as the “‘critical velocity'* v, at which it may break
through the ice. Methods for determining v, for floating plates subjected to moving loads have
been presented by Assur (1961), Kheishin (1963, 1967) and Nevel (1970). Kheishin and Nevel
utilized the linear bending theory of plates to describe the response of the ice cover, and the equa-
tions of an ideal fluid to describe the response of the liquid base.

Recently, Kerr (1972) showed that an axial force in a beam on a Winkler base that is subjected
to a moving lateral load may have a profound effect upon v.,. Since axial in-plane forces also occur
in floating ice covers, caused by constrained thermal strains, it is of interest to determine their
effect uponv,,. The purpose of the present paper is to study this phenomenon.

At first, we analyze some related problems: the magnitude of the critical in-plane compression forces
for a uniform biaxial stress field, and then the propagation of free waves in the floating plate subjected to in-
plane stresses. This is followed by the determination of v, for a floating plate subjected to a moving load
and an in-plane force field.

THE INSTABILITY OF A FLOATING INFINITE PLATE
SUBJECTED TO A BMXIAL FORCE FIELD
It is assumed that the governing equation for the determination of N or I8
DV « NO%w 4 pgw = 0 m
where

4 ¢
v‘ = .‘3._ +2 a‘ + i—. (2)
oxt m!m! ayi

w(x, y) is the perturbation from the plane state, D is the flexural rigidity of the plate, and P8 is
the specific weight of the liquid base.




2 CRITICAL VELOCITIES OF LOADS MOVING OVER FLOATING ICE PLATES
For a buckling mode of the form
w(X,y) = W, sin(a,X) 3)

where w, - const., eq 1 yields, setting
pd/D = x4 - 1/f*,

(a: - %af + x‘)wo sin (all) =0. (4)

Equation 4 is satisfied for a non-zero w when

at-%a%#n‘:ﬂ (5)
and thus when
4, 4
N aj+«k
D s (6)

b |
Since the right-hand side of eq 6 is > 0 it follows, as anticipated, that the deformation mode of
the form shown in eq 3 is only possible when N is a compression field, as is shown in Figure 1.
From dN/D)/3a, =0, it follows that N = N_ . when
a = K ()

Substituting eq 7 into eq 6, it follows that

7 -1 /5 ®
ot, rewritten,
Nee = 2vpeD.* 9)

The corresponding wave length is

%2?—!??2?2"1:2" 2—. (lo)
al K *vp‘

THE PROPAGATION OF FREE WAVES

The liquid layer

Assuming that the liquid layer (Fig. 2) responds like an ideal fluid (Kheishin 1963), and that
the ratio of amplitude to wave length is very small, the resulting equations, in terms of the velocity
potential 9, are:

* The same result is obtained for w(x) = wg sin (a,x) sin (s,). However then, instead of eq 7, x? = a + af.
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CRITICAL VELOCITIES OF LOADS MOVING OVER FLOATING ICE PLATES
» Free surfoce

1 l oy vy, ®-0 fo0sz<H
H 2
a 130
———— =0
0z g 2 2=0
Figure 2. dz /z=H
where
@ i &
Vyg=—t—t—.
6!2 a’.ﬁ (’22
Assuming

®(x,z,t) = Ag(2) cosa (x - ct)

and substituting it into eq 11, it follows that ¢(z) has to satisfy

2
"_¢-a2¢=o for 0<z<H.
dz?

The general solution of the above differential equation is
#(z2) = B e*%* 4 Bze‘“' :

Noting boundary condition 13, it follows that
#(2) = 2810“" cosha (H - 2).

Substitution of eq 15 and 14 into the remaining boundary condition (12) yields

a®c?

2A8‘e"" [—a sinha (H - 2) + cosha (H -:)I cosa (x -ct) =0,
Z
The above equation is satisfied, for any amplitude of ¥, when

cf - € igna).

T o - = o g ot

EEPTTE T

conin A SRS

(11)

(12)

(13)

(14)

(15)

(16)

Noting that a = 2n/A it follows that a solution of the form 14 will exist when the phase velocity ¢

and the wave length A are related by the dispersion relation:

SN

(16a)

R T R T
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4 CRITICAL VELOCITIES OF LOADS MOVING OVER FLOATING ICE PLATES

Equation 16 is presented schematically in
Figwe 3. Thus, there exists a range of 0 S € < =
and to each phase velocity there corresponds a
wave length A,

It may be shown (Lamb 1945) that to the above
solution thete corresponds a sinusoidal free surface
wave of wave length A which travels in the x
direction with the velocity c. For additional com-
ments the reader is referred to the literature on free
waves in liquids.

The stressed plate (without base)

Assuming that the plate responds elastically
a and is subjected to a uniform in-plane force field

Figure 3. N, the following plate equation is used for long
waves:

Dv:.’v + Nvﬁ',w + pph %’ =0. (17)

Assuming a traveling wave of the form
wx,p,2) = wy sina (x - ct) (18)
and substituting it into the above differential equation, it follows that
[Da* - Na® - pphagczl W, sina (x - ct) = 0.

Thus, a wave of the form 18 can propagate in the plate when N < Da? and then ¢, a and N are related by the
dispersion relation :

g _ Da® - N
p1 ——Pp" 7 (19)

Writing N = na®D where n < 1,eq - .comes

id 1-n)D

Pl Pp.

c ; (192)

Equation 19a is presented schematically in Figure 4.

The stressed plate resting o a ligaid layer

Retaining the assumptions made in the two preceding sections, the resulting formulation is
(Kheishin 1963):

DUE ,w + NUZ w4 poh g*,p-p,‘; =0 (20)
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$ CRITICAL VELOCITIES OF LOADS MOVING OVER FLOATING ICE PLATES 5

(@1)
(22)
a0
C; s=H 2 o (28)
and regularity conditions for wand ® as x® + y2 + «.
It is assumed, as above, that
w(x,p,1) = wy sina (x - cf) 18)
: 3
®(x,2,t) = Ap(2) cosa (x - ct). (14) :

Note that to the assumed @ in eq 14 there corresponds in the liquid, and hence aiso at the plate/liquid inter-
face, a sinusoidal wave of the type shown in eq 18.

It was shown before that differential equation 21 and the boundary condition 23 are satisfied
when

oAl

#(2) = 2B, e cosha (H - 2). . (15)

Substituting expressions 15 and 18 into condition 22 yields
!-wle“ [sinha(H - 2)),__ + cwylacosa (x -ct) = 0.
The above equation is satisfied when

C'o

248, -
: e sisha W -w)°




6 CRITICAL VELOCITIES OF LOADS MOVING OVER FLOATING ICE PLATES

cw, cosha (H - 2) cw, cosha H-2)

cosa (x - ct) = cosa (x - ct) (24)

a0 sinha (H - w) sinha H

since usually w << H,

Substitution of w(x, t) as given in eq 18 and of ¥(x, z, t) as shown above into differential equa-
tion 20 yields, noting that w << H,

2
(Da‘ - Na® - pplmgcz + pel - Py “«ﬁ%ﬁﬂ)wo sina (x - ct) = 0.
The above equation is satisfied when
c?
¢2(¢2 - z " "'a I -—cuh (all)l 0. (25)

This is the dispersion relation for the stressed plate on a liquid base.
Thus,
P
(Da® - N) + -L‘-

2
a
cf,’ % P : (26)

' h+ ._.__'__]
Po" * atghtah)

As expected, when the plate is absent (D = N = i = 0) eq 26 reduces to eq 16, and when the liquid
is absent (p, = 0) eq 26 reduces to eq 19.

Denoting

2
-2 o, L

rl - P ol

eq 25 may be written as

1+ bt - "p — (ab?® - v Iu(ab2+alct¢h (al )l (258)
and eq 26 as
V3 = 14a0?((@0? -NED] _ tehiaH)

(7)) 1*uat rgh(a)

A graphical presentation of eq 26 is shown in Figure S for /f = =, p, = | g/em?, p, = 0.92 g/em?, £ =
$0,000 kg/cm?,» = 0.34 and h = 30 cm (thus, £ = 454 cm and u = 0.0609). The :iwmon is similar to that
of a beam on a Winkler base discussed recently by Kerr (1972). Namely for a given N < N, a wave of the form

(26a)
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C.,

o],

2.0}

Figure 5.

18 cannot propagate for 0 < ¢ < (€pe)y and for each ¢ > (Cpt)min tWO Wave trains with different A may
propagate.

The findings of Kerr (1972) as well as those of Kheishin (1967) suggest that (c:',,),mn may be
the critical velocity of a load P which moves in the direction of the x-axis.

A necessary condition for locating (cp,)m in fOr a given N is
ac
—rt u .

It yields, using eq 26, and then setting N/a®D = n to simplify the presentation of the final result,

(1 + @D (1 - m)aH - 2uad1 - (@) sinh? @)+ % sinh (2aH) (@3 - 0) - 1] - 0 (6:29)

or, rewritten,

10@Dte-9 sl 11 - (@btuieDrghia)
1+ @Dt -n) SOR@D T A )

(27a)

It is of interest to note that eq 26a and 27a for the case N - 0 are the conditions for the determina-
tion of the critical velocity Vor Used by Nevel (1970),

The minimum value of N is obtained from the condition

) e




8 CRITICAL VELOCITIES OF LOADS MOVING OVER FLOATING ICE PLATES

It is found to take place at

= p‘
a= V’T.

The corresponding
(Nuin)cw=0 - 2@- (28)

Thus, it is equal to the critical ccipression force N, given in eq 9.

THE STRESSED FLOATING PLATE SUBJECTED TO A MOVING LOAD P

It is assumed that the plate is subjected to a force P which moves with a constant velocity
vo as shown in Figure 6. The governing equations are:

- P5(x - v (y)
w

Pw a0
PN S |

(29)

viy.l0 =0
where

ft, ow
R .
0
bl - 3
Tlea 0 31)

and regularity conditions for w and ® as 24y o,

AR AR
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It is further assumed that after a time ¢t a steady state will exist. This assumption allows the
time variable to be transformed out by means of the simple transformation

£=x- vt n=y (=2,

The resulting formulation consists of differential equations

DVt w +ND2 w4+ p hvd 62_\\! + + PV Ql( = P&¢)é(n) (32)
f,’.' é",’ pp 0 aﬁe p‘w Py 086 e n

v% ni®=0 (33)
with the boundary conditions

P aw

T (34)

3% ' en”° g
and the regularity conditions for w and ® as x24y% o

lim ow aw ad b
P = = s 0 36
Emtos (v 5 an " OE ) o

The resulting formulation differs from the one used by Kheishin (1963, 1967) and Nevel (1970)
in that it contains the term sz w in the first equation. To solve the posed problem we proceed
according to Kheishin (1967) and Nevel (1970).

We introduce the double Fourier transforms

Fap) = [ f w(é, ) '@+ B agay @7)
Sap 0= [ [ 00 @trB acay, (38)

Multiplying eq 33 by ¢! (a+Bn) anq integrating it as indicated in eq 38 we obtain

f fn(azo ﬂ a%>e4(a§+5ﬂ) dédn=0.

& ot o

Using integration by parts, and noting regularity conditions 36 and definition 38, the above equa-
tion becomes

y?o 0 for 05 {< o (39)
ac'

o Sl b kb AL

s ik L amy




where
y2 ~a®+ B2,

The same transformation performed on the boundary conditions 34 and 35 yields
ad
a¢
E)
a¢

= - iavoW
¢=w

» 0
¢-H

The general solution of eq 39 is
6 - Ale_y‘: + Agﬁ'y‘:.
Noting the boundary conditions in eq 41 and 42, ® becomes

iavoW coghy(H - ¢)
y sinhyH -w)’

®a,B.0) -

For w << H, the above equation simplifies to

- [i“'o coshy(H - ¢)

D B.0) = W (a, B).
(a, 8. ¢ e Iw(am

The same transformation performed on differential equation 32 yields

(D(a% + 22282 + BY - N@® + B - pphv%n2 rpRlw + iprvona Sin " P,

Since according to eq 45, for w << H,
& iav
¢ . .___0_. w
' Gow = ytgh yH

eq 46 becomes, noting eq 40,
t
P Y
Dyt - Ny® ~v2 {p ha® w-P,
[ S ol el

2
Iz D _Pph ve Yo

’;'; [ P-J 0"“7

Denoting

eq 47 may be rewritten as follows:

10 CRITICAL VELOCITIES OF LOADS MOVING OVER FLOATING ICE PLATES

(40)

(41)

(42)

(43)

(449)

(456)

(46)
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CRITICAL VELOCITIES OF LOADS MOVING OVER FLOATING ICE PLATES 11
5 P
; - P2 b W )|
N, ’
& 4 _ y'r _y2 2
% 3 P,l‘l + () 5 oln(a[) v o ""’"]l ‘:
" Inverting W, it follows that
o l(a{ + ﬁ”) %
w(é, p) = £ f ] O it dg (48) 1
4'rzpl¢ S Joo @ - ba¥/y? 2
where g
A
2 5
a-=1+ (yl)‘ —!l[)_ (yl)g 49) 2
b-VE I#(y[)” + ylcigh ( vl ;)l . (50) 1
It may be shown, as done by Nevel (1970), that w(¢, n) = % when
s =b (51) 3
and
da _ ab
3 oy o

PSSR

Nevel used these two conditions to determine the critical velocity v,.
It :hould be noted that these two conditions are identical to eq 25a and eq 27a, when the variable (v8) is 3
replaced by (a?) and the parameter ¥V, by Vps- Since the variables (y8) or (a®), determined from €q 52 or 27a,
are identical, it follows that eq 52 for the determination of ¥, and eq 25a for the determination of Vot are
identical. Thus, as expected, the critical velocity Vo is the same as (c,,)mh. Hence, the dependence of the
critical velocities v, upon the axial force field NV is as shown in Figure S for (¢pt)min and is shown in Figure 8 :
for h = 30 cm and 90 cm. The dependence of v, upon N and h was obtained by numerically evaluating eq 26 i
and 27 for H = o, noting that (¢,¢)pmy, = V- The obtained results are shown in Figure 9. :

e




12 CRITICAL VELOCITIES OF LOADS MOVING OVER FLOATING ICE PLATES

CONCLUSION

The effect of a uniform in-plane force field in a floating plate upon the critical velocities of a
moving load has been studied. For an increasing compression force field the critical velocity de-
creases, approaching the value zero as N -~ N or+ fOr an increasing tension force field v, increases.
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